Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light.

نویسندگان

  • U Niinemets
  • D S Ellsworth
  • A Lukjanova
  • M Tobias
چکیده

Morphological and photosynthetic acclimation of current-year needles to canopy gradients in light availability (seasonal mean integrated quantum flux density, Q(int)) was studied in the temperate conifer, Pinus sylvestris L., at two sites of contrasting nutrient availability. The nutrient-rich site supported a monospecific P. sylvestris stand on an old-field. The trees were approximately 30 years old and 19-21 m tall. Mean foliar N and P contents (+/- SD) were 1.53 +/- 0.11% and 0.196 +/- 0.017%, respectively. The nutrient-poor site was located on a raised bog supporting a sparse stand of 50- to 100-year-old trees, with a height of 1-2 m, and mean needle N and P contents of 0.86 +/- 0.12% and 0.074 +/- 0.010%, respectively. At both sites, needle thickness (T) and width (W) increased with increasing Qint, and leaf dry mass per unit leaf area (MA) was also greater at higher irradiance. The light effects on MA-the product of needle density (D) and volume to total area ratio (V/AT)-resulted primarily from large increases in V/AT with Qint rather than from modifications of D, which was relatively insensitive to light. Although needle morphology versus light relationships were qualitatively similar at both sites, needles were shorter, and the slopes of W, T, MA and V/AT versus light relationships were lower, at the nutrient-poor than at the nutrient-rich site, indicating that the plasticity of foliar morphological characteristics was affected by nutrient availability. As a result of lower plasticity, needles at the nutrient-poor site were narrower, thinner, and had lower MA at high irradiance than needles at the nutrient-rich site. The maximum carboxylase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Vcmax) and the maximum photosynthetic electron transport rate (Jmax) scaled positively with foliar N and P contents. The correlations were generally stronger with P than with N, suggesting that needle photosynthetic capacity was more heavily limited by the availability of P than of N. The Jmax/Vcmax ratio was positively related to the foliar P/N ratio, indicating that Jmax was more strongly suppressed than Vcmax under conditions of low P availability. Phosphorus and N deficiency also limited the plasticity of foliar photosynthetic characteristics. There was a moderate increase in needle photosynthetic capacity of up to 1.6-fold from the bottom to the top of the canopy at the nutrient-rich site, but net assimilation rates were essentially independent of canopy position at the nutrient-poor site. Stomatal constraints on photosynthesis were similar between the sites, indicating that photosynthetic acclimation was curtailed at the biochemical level. We conclude that the foliar capacity for morphological and physiological acclimation to high light significantly decreases with decreasing nutrient availability in P. sylvestris, and that both N and P availability are potentially important determinants of foliar carbon gain capacities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of needle age, long-term temperature and CO(2) treatments on the photosynthesis of Scots pine.

Naturally regenerated 20-25-year-old Scots pine (Pinus sylvestris L.) trees were grown in open-top chambers in the presence of an elevated temperature or CO(2) concentration, or both. The elevated temperature treatment was administered year-round for 3 years. The CO(2) treatment was applied between April 15 and September 15 for 2 years. The photosynthetic responses of 1- and 2-year-old needles ...

متن کامل

Shoot structure and photosynthetic efficiency along the light gradient in a Scots pine canopy.

We examined the effects of structural and physiological acclimation on the photosynthetic efficiency of Scots pine (Pinus sylvestris L.) shoots. We estimated daily light interception (DLI) and photosynthesis (DPHOT) of a number of sample shoots situated at different positions in the canopy. Photosynthetic efficiency (epsilon) was defined as the ratio of DPHOT to the potential daily light interc...

متن کامل

Variability in leaf-level CO2 and water fluxes in Pinus banksi

change in two stands of jack pine (Pinus banksiana Lamb.) and one stand of black spruce (Picea mariana (Mill.) B.S.P.) on relatively clear days from late May until mid-September 1994. Field measurements were made with a portable infrared gas analyzer, and laboratory measurements included photosynthetic oxygen evolution and needle chemical composition. Seasonally averaged light-saturated assimil...

متن کامل

The effect of temperature and PAR on the annual photosynthetic production of Scots pine in northern Finland during 1906–2002

The annual photosynthetic production of Scots pine (Pinus sylvestris) was simulated for 1906–2002 for a location in northern Finland. We used the PhenPhoto model, which combines two key features of photosynthesis: the response to instantaneous radiation and the acclimation to the annual cycle. The input data for the PhenPhoto model include instantaneous photosynthetically active radiation (PAR)...

متن کامل

Field and controlled environment measurements show strong seasonal acclimation in photosynthesis and respiration potential in boreal Scots pine

Understanding the seasonality of photosynthesis in boreal evergreen trees and its control by the environment requires separation of the instantaneous and slow responses, as well as the dynamics of light reactions, carbon reactions, and respiration. We determined the seasonality of photosynthetic light response and respiration parameters of Scots pine (Pinus sylvestris L.) in the field in southe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tree physiology

دوره 21 17  شماره 

صفحات  -

تاریخ انتشار 2001